Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б	1.Б.19 Механика жидкости и газа						
наименование дисциплины (модуля) в соответствии с учебным планом							
Направление подготог	вки / специальность						
15.03.02 TEXHO.	ЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ						
Направленность (прос	филь)						
15.03.02.01 Проекти	рование технических и технологических комплексов						
	-						
Форма обучения	очная						
Год набора	2020						

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
к.т.н., Зав.ка	федрой, Кондрашов Петр Михайлович
	лопжность инициалы фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Изучение физических основ и прикладных задач механики жидкости и газа, которые возникают в процессе проектирования, изготовления и эксплуатации машин и оборудования нефтяных и газовых промыслов.

1.2 Задачи изучения дисциплины

Изучение основных законов механики жидкости и газа с целью использования их для решения практических задач, возникающих в процессе проектирования, изготовления и эксплуатации машин и оборудования нефтяных и газовых промыслов.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ОПК-1: способностью к приобретению с большой степенью									
самостоятельности новых знаний с использованием современных									
образовательных и информац	ионных технологий								
ОПК-1: способностью к	способы приобретения новых знаний по механике								
приобретению с большой	жидкости и газа								
степенью самостоятельности									
новых знаний с									
использованием современных приобретать самостоятельно новые знания по									
образовательных и	механике жидкости и газа								
информационных технологий	методами самостоятельного приобретения новых								
знаний по механике жидкости и газа									
ОПК-5: способностью реша	ть стандартные задачи профессиональной								

ОПК-5: способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности

ОПК-5: способностью	стандартные задачи профессиональной					
решать стандартные задачи	деятельности, в которых используются					
профессиональной	закономерности поведения жидкости и газа					
деятельности на основе	решать стандартные задачи профес-сиональной					
информационной и	деятельности, в которых ис-пользуются					
библиографической культуры	закономерности поведения жид-кости и газа					
с применением	методами решения стандартных задач					
информационно-	профессиональной деятельности, в которых					
коммуникационных	используются закономерности поведения жидкости и					
технологий и с учетом	газа					
основных требований						
информационной						
безопасности						
TITC =	1					

ПК-7: умением проводить предварительное технико-экономическое обоснование проектных решений

ПК-7: умением проводить	формулы, физические законы для предварительного
предварительное технико- экономическое обоснование проектных решений	расчета технико-экономического обоснования проектных решений уметь проводить предварительные расчеты для
	технико-экономического обоснования проектных решений навыками анализа полученных результатов для обоснования технико-экономических показателей проектных решений

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

	-	e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,5 (54)	
занятия лекционного типа	0,5 (18)	
лабораторные работы	1 (36)	
Самостоятельная работа обучающихся:	1,5 (54)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
			ятия	Занятия семинарско			типа	Самостоятельная работа, ак. час.	
№ π/π	Модули, темы (разделы) дисциплины	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы			
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Раздел 1. Физические свойства жидкостей и газов									
	1. Физические свойства жидкостей и газов. Реологические модели жидкостей, использу-емых в машинах и оборудовании нефтяных и газовых промыслов. Плотность, сжимаемость и тепловое расширение жидкостей и газов. Закон Паскаля. Сила давления жидкости на плоскую стенку. Закон Архимеда.	2							
	2. Выбор реологической модели с помощью ротационного вискозиметра BCH-3 и пикнометра					4			
	3. Определение плотности жидкости с помощью рычажных весов - плотномера ВРП-1 и вискозиметра бурового раствора ВБР-2					4			
	4. Прибор для измерения статического напряжения сдвига CHC-2					4			
	5. Изучение теоретического курса, решение задач							6	
2. Pa	2. Раздел 2. Дифференциальные уравнения равновесия жидкости.								

1. Дифференциальные уравнения равновесия жидкости (гидростатика, уравнения Эйлера). Основные этапы решения задач, состояние жидкости в которых описывается уравнениями Эйлера. Начальные и граничные условия.	2							
2. изучение теоретического курса, решение задач							6	
3. Раздел 3. Дифференциальные уравнения течения ньютоно	вской и н	еньютон	овской ж	кидкостей	і. Элеме і	нты подзе	мной	
1. Дифференциальные уравнения течения ньютоновской и неньютоновской жидкостей в круглой прямой трубе. Элементы подземной гидравлики. Течение остывающей жидкости в круглой прямой трубе.	2							
2. изучение теоретического курса, решение задач							6	
4. Раздел 4. Уравнение Бернулли для движущейся жидкости.	Элемент	ы теории	струйнь	ых насосо	В.			
1. Уравнение Бернулли для движущейся жидкости. Элементы теории струйных насосов.	2							
2. Применение уравнения Бернулли для движущейся жидкости на примере анализа конструкции струйного насоса эжектора-аэратора бурового раствора конструкции ООО «НПП Сиброн»					4			
3. изучение теоретического курса, решение задач							6	
5. Раздел 5. Дифференциальные уравнения истечения жидко	сти через	насадки	. Взаимо,	действие	струи с	твёрдым	гелом.	
1. Дифференциальные уравнения истечения жидкости через насадки. Взаимодействие струи с твёрдым телом	2							
2. Истечение из сосуда конической формы (воронки Марша)					4			
3. изучение теоретического курса, решение задач							6	
6. Раздел 6. Гидравлический удар. Уравнения Эйлера для дви	ижущейся	а жидкос	ГИ	L	1	1		

1. Гидравлический удар. Уравнение Эйлера для движущейся жидкости.	2							
2. изучение теоретического курса, решение задач							6	
7. Раздел 7. ? теорема и другие элементы теории размерносте	й.							
1. π теорема и другие элементы теории размерностей.	2							
2. изучение теоретического курса, решение задач							6	
8. Раздел 8. Использование чисел Рейнольдса, Фруда, Струха	ля и друг	тих крите	риев тео	рии подо-	бия при	решении	задач	
1. Использование чисел Рейнольдса, Фруда, Струхаля и других критериев теории подобия при решении задач механики жидкости и газа.	2							
2. Изучение элементов теории плавания тел в процессе анализа работы ареометра AБР-2					6			
3. Критерии (числа) в механике жидкости и газа: Маха, Рейнольдса, Фруда, Струхаля					4			
4. Использование чисел Рейнольдса, Фруда, Струхаля и других критериев теории подобия при решении задач механики жидкости и газа					6			
5. изучение теоретического курса, решение задач							6	
9. Раздел 9. Элементы теории плавания тел.								
1. Элементы теории плавания тел	2							
2. изучение теоретического курса, решение задач							6	
Всего	18				36		54	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Лойцянский Л. Г. Механика жидкости и газа: учебник для вузов(Москва: Дрофа).
- 2. Миловидова Т. А., Лобасова М. С. Механика жидкости и газа: методические указания по решению задач для студентов укрупненной группы напр. подготовки спец. 140000 всех форм обучения(Красноярск: СФУ).
- 3. Веренич И. А. Механика жидкости и газа (гидродинамика): учеб.-метод. пособие к практ. занятиям(Минск: БНТУ).
- 4. Белолипецкий В. М., Андреев В. К., Бекежанова В. Б., Гавриленко Т. В. Механика жидкости и газа: электрон. учеб.-метод. комплекс дисциплины (Красноярск: ИПК СФУ).
- 5. Белолипецкий В. М. Механика жидкости и газа: учебное пособие (Красноярск: Красноярский университет [КрасГУ]).
- 6. Славин В.С., Лобасова М.С., Миловидова Т. А. Механика жидкости и газа: методические указания к решению задач для студентов напр. подготовки дипломированных специалистов 651100 "Техническая физика" (спец. 070700)(Красноярск: ИПЦ КГТУ).
- 7. Турутин Б.Ф., Нешатаева А.В. Механика жидкости и газа: Сборник заданий для студентов спец. 290300, 290800, 291000(Красноярск: КрасГАСА).
- 8. Сиб. федерал. ун-т Механика жидкости и газа: организационно-метод. указ.(Красноярск: ИПК СФУ).
- 9. Сиб. федерал. ун-т Механика жидкости и газа: учеб.-метод. обеспечение самостоятельной работы студентов(Красноярск: ИПК СФУ).
- 10. Миловидова Т.А., Лобасова М.С. Механика жидкости газа: метод. указания к решению задач для студентов направления подготовки дипломированных специалистов 140000 "Энергетика, энергетическое машиностроение и электротехника" (Красноярск: Сибирский федеральный ун-т; Политехнический ин-т).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Microsoft Windows Professional 7
- 2. Microsoft Office Professional Plus 2010
- 3. Adobe Acrobat Pro Extended 9.0
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Электронная библиотечная система «СФУ» https://bik.sfu-kras.ru/;

- 2. Политематическая электронно-библиотечная система «Znanium» изд-ва «Инфра-М» http://www.znanium.com;
- 3. Политематическая электронно-библиотечная система издательства «Лань» http://e.lanbook.com;
- 4. Политематическая БД российских диссертаций Российской государственной библиотеки https://diss.rsl.ru;
- 5. Электронная библиотека РГУ нефти и газа им. И.М. Губкина.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Учебная аудитория для проведения занятий лекционного типа:

- специализированная мебель: аудиторные столы и стулья; аудиторная доска.
- технические средства обучения: проектор, экран для проектора, ноутбук с подключением к сети Интернет (неограниченный доступ) и обеспечением доступа в электронную информационно-образовательную среду Университета.

Учебная аудитория для проведения занятий семинарского типа и курсового проектировани:

- специализированная мебель: аудиторные столы и стулья; аудиторная доска.
- технические средства обучения: 13 компьютеров, интерфейс с подключением к сети Интернет (неограниченный доступ) и обеспечением доступа в электронную информационно-образовательную среду Университета, 13 посадочных мест.

Помещение для самостоятельной работы:

- специализированная мебель: аудиторные столы и стулья, аудиторная доска, 12 компьютеров с подключением к сети Интернет (неограниченный доступ) и обеспечением доступа в электронную информационно-образовательную среду Университета.

Учебная аудитория для проведения групповых и индивидуальных консультаций:

Специализированная мебель: аудиторные столы и стулья; аудиторная доска.

Технические средства обучения: проектор, экран для проектора, ноутбук с подключением к сети Интернет (неограниченный доступ) и обеспечением доступа в электронную информационно-образовательную среду Университета.

Учебная аудитория для текущего контроля и промежуточной аттестации: Специализированная мебель: аудиторные столы и стулья; аудиторная доска.

Технические средства обучения: проектор, экран для проектора, ноутбук с подключением к сети Интернет (неограниченный доступ) и обеспечением доступа в электронную информационно-образовательную среду Университета.

Для выполнения НИРС по дисциплине желательно наличие приборов:

- 1.Пикнометр;
- 2. Ротационный вискозиметр ВСН-3;
- 3. Прибор для измерения фильтрации бурового раствора ВМ-6М;
- 4. Фильтр-пресс $\Phi\Pi$ -1M;
- 5. Приборы для определения песка в растворах: отстойник ОМ-2 и отстойник Лысенко;
- 6. Прибор для измерения стабильности бурового раствора ЦС-2;
- 7. Прибор для определения электро-стабильности инвертных эмульсионных растворов ИР.
- 8. Прибор электростабильности ПС-256.
- 9. Титровальная установка.

Консистометры КЦ-3 и КЦ-5.